Eval. P3

Electricidad
La electricidad (del griego ήλεκτρον élektron, cuyo significado es ‘ámbar’) es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática, la inducción electromagnética o el flujo de corriente eléctrica. La electricidad es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporteclimatizacióniluminación y computación.
La electricidad se manifiesta mediante varios fenómenos y propiedades físicas:
·   Carga eléctrica: una propiedad de algunas partículas subatómicas, que determina su interacción electromagnética. La materia eléctricamente cargada produce y es influida por los campos electromagnéticos.
·      Corriente eléctrica: un flujo o desplazamiento de partículas cargadas eléctricamente por un material conductor; se mide en amperios.
·   Campo eléctrico: un tipo de campo electromagnético producido por una carga eléctrica incluso cuando no se está moviendo. El campo eléctrico produce una fuerza en toda otra carga, menor cuanto mayor sea la distancia que separa las dos cargas. Además las cargas en movimiento producen campos magnéticos.
·   Potencial eléctrico: es la capacidad que tiene un campo eléctrico de realizar trabajo; se mide en voltios.
·    Magnetismo: La corriente eléctrica produce campos magnéticos, y los campos magnéticos variables en el tiempo generan corriente eléctrica.
La electricidad se usa para generar:
·         luz mediante lámparas
·         calor, aprovechando el efecto Joule
·         movimiento, mediante motores que transforman la energía eléctrica en energía mecánica
· señales mediante sistemas electrónicos, compuestos de circuitos eléctricos que incluyen componentes activos (tubos de vacíotransistoresdiodos y circuitos integrados) y componentes pasivos como resistoresinductores y condensadores.

Historia de la electricidad
El fenómeno de la electricidad ha sido estudiado desde la antigüedad, pero su estudio científico sistemático comenzó en los siglos XVII y XVIII. A finales del siglo XIX los ingenieros lograron aprovecharla para uso doméstico e industrial. La rápida expansión de la tecnología eléctrica la convirtió en la columna vertebral de la sociedad industrial moderna.
Mucho tiempo antes de que existiera algún conocimiento sobre la electricidad, la humanidad era consciente de las descargas eléctricas producidas por peces eléctricos. En textos del Antiguo Egipto que datan del 2750 a. C. se referían a estos peces como “los tronadores del Nilo”, descritos como los “protectores” de los otros peces. Posteriormente, los peces eléctricos también fueron descritos por los romanosgriegos, árabes naturalistas y físicos.3 Autores antiguos como Plinio el Viejo o Escribonio Largo, describieron el efecto de adormecimiento de las descargas eléctricas producidas por peces eléctricos y rayas eléctricas; además, sabían que estas descargas podían transmitirse por materias conductoras.4 Los pacientes que sufrían de enfermedades como la la gota y el dolor de cabeza se trataban con peces eléctricos con la esperanza de que la fuerte sacudida pudiera curarlos.5Posiblemente el primer acercamiento al estudio del rayo y su relación con la electricidad, se atribuye a los árabes, que antes del siglo XV tenían la palabra árabe para rayo (raad) aplicado al rayo eléctrico.
En culturas antiguas del mediterráneo se sabía que ciertos objetos, como una barra de ámbar, al frotarla con una lana o piel podía atraer objetos livianos como plumas. Hacia el año 600 a. C. Tales de Mileto hizo una serie de observaciones sobre electricidad estática, donde creyó que la fricción dotaba de magnetismo al ámbar, al contrario que minerales como la magnetita, que no necesitaban frotarse.  Tales se equivocó al creer que la atracción era producida por un campo magnético, aunque más tarde la ciencia probaría que hay una relación entre el magnetismo y la electricidad. De acuerdo a una teoría controvertida, los partos podrían haber conocido la electrodeposición, basándose en el descubrimiento en 1936 de la Batería de Bagdad, similar a una celda voltaica, aunque es incierto si el artefacto era de naturaleza eléctrica.
Mientras la electricidad se consideraba todavía poco más que un espectáculo de salón en el siglo siglo XVIIWilliam Gilbert realizó un estudio cuidadoso de electricidad y magnetismo, diferenciando el efecto producido por trozos de magnetita, de la electricidad estática producida al frotar ámbar.  Además, acuñó el término neolatíno electricus (que a su vez proviene deήλεκτρον [elektron], la palabra griega para ámbar) para referirse a la propiedad de atraer pequeños objetos después de haberlos frotado.10 Esto dio alcance al uso de "eléctrico" y "electricidad", haciendo su primera aparición en 1646 en la publicación Pseudodoxia Epidemica de Thomas Browne.
Posteriormente, se hicieron nuevas aproximaciones científicas al fenómeno en el siglo XVIII por investigadores sistemáticos como Henry Cavendish,  Du Fayvan Musschenbroek  y Watson. Estas observaciones empiezan a dar sus frutos con Galvani,  Volta,  Coulomb  y Franklin,  y, ya a comienzos del siglo XIX, con Ampère,  Faraday  y Ohm.  No obstante, el desarrollo de una teoría que unificara la electricidad con el magnetismo como dos manifestaciones de un mismo fenómeno llegó hasta la formulación de las ecuaciones de Maxwell en 1865.
Los desarrollos tecnológicos que produjeron la Primera Revolución Industrial no hicieron uso de la electricidad. Su primera aplicación práctica generalizada fue el telégrafo eléctrico de Samuel Morse (1833), que revolucionó las telecomunicaciones.  La generación de electricidad industrialmente comenzó cuando, a fines del siglo XIX, se extendió la iluminación eléctrica de las calles y las casas. La creciente sucesión de aplicaciones que esta forma de la energía produjo hizo de la electricidad una de las principales fuerzas motrices de la Segunda Revolución Industrial.  Este fue un tiempo de grandes inventores, como Gramme,  Westinghouse,  von Siemens  o Alexander Graham Bell.  Entre ellos destacaron Nikola Tesla y Thomas Alva Edison, cuya revolucionaria manera de entender la relación entre investigación y mercado capitalista convirtió la innovación tecnológica en una actividad industrial.  

Conceptos

Carga eléctrica
La carga eléctrica es una propiedad de la materia que se manifiesta mediante fuerzas de atracción y repulsión. La carga se origina en el átomo, el cual está compuesto de partículas subatómicas cargadas como el electrón y el protón.  La carga puede transferirse entre los cuerpos por contacto directo, o al pasar por un material conductor, generalmente metálicos.  El término electricidad estática hace referencia a la presencia de carga en un cuerpo, por lo general causado por dos materiales distintos que se frotan entre sí, transfiriéndose carga uno al otro.  
La presencia de carga da lugar a la fuerza electromagnética: una carga ejerce una fuerza sobre las otras, un efecto que era conocido en la antigüedad, pero no comprendido.  Una bola liviana, suspendida de un hilo, podía cargarse al contacto con una barra de vidrio cargada previamente por fricción con un tejido. Se encontró que si una bola similar se cargaba con la misma barra de vidrio, se repelían entre sí. Este fenómeno fue investigado a finales del siglo XVIII por Charles-Augustin de Coulomb, que dedujo que la carga se manifiesta de dos formas opuestas.37 Este descubrimiento trajo el conocido axioma "objetos con la misma polaridad se repelen y con diferente polaridad se atraen".
La fuerza actúa en las partículas cargadas entre sí, y además la carga tiene tendencia a extenderse sobre una superficie conductora. La magnitud de la fuerza electromagnética, ya sea atractiva o repulsiva, se expresa por la ley de Coulomb, que relaciona la fuerza con el producto de las cargas y tiene una relación inversa al cuadrado de la distancia entre ellas.  La fuerza electromagnética es muy fuerte, la segunda después de la interacción nuclear fuerte,  con la diferencia que esa fuerza opera sobre todas las distancias.  En comparación con la débil fuerza gravitacional, la fuerza electromagnética que aleja a dos electrones es 10  veces más grande que la atracción gravitatoria que los une.
Las cargas de los electrones y de los protones tienen signos contrarios, además una carga puede expresarse como positiva o negativa. Por convención, la carga que tiene electrones se asume negativa y la de los protones, positiva, una costumbre que empezó con el trabajo de Benjamin Franklin.  La cantidad de carga se representa por el símbolo Q y se expresa en culombios.  Los electrones tiene la misma carga de aproximadamente -1.6022×10−19 culombios. El protón tiene una carga que es igual y opuesta +1.6022×10−19 colombios. La carga no sólo está presente en la materia, sino también por la antimateria, cada antipartícula tiene una carga igual y opuesta a su correspondiente partícula.
La carga puede medirse de diferentes maneras, un instrumento muy antiguo es el electroscopio, que aún se usa para demostraciones en las aulas, ahora superado por el electrómetro electrónico.

Corriente eléctrica
Se conoce como corriente eléctrica al movimiento de cargas eléctricas. La corriente puede estar producida por cualquier partícula cargada eléctricamente en movimiento; lo más frecuente es que sean electrones, pero cualquier otra carga en movimiento se puede definir como corriente.  Según el Sistema Internacional, la intensidad de una corriente eléctrica se mide en amperios, cuyo símbolo es A.  
Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó como sentido convencional de circulación de la corriente el flujo de cargas desde el polo positivo al negativo. Más adelante se observó, que en los metales los portadores de carga son electrones, con carga negativa, y que se desplazan en sentido contrario al convencional.  Lo cierto es que, dependiendo de las condiciones, una corriente eléctrica puede consistir de un flujo de partículas cargadas en una dirección, o incluso en ambas direcciones al mismo tiempo. La convención positivo-negativo se usa normalmente para simplificar esta situación.  
El proceso por el cual la corriente eléctrica circula por un material se llama conducción eléctrica, y su naturaleza varía dependiendo de las partículas cargadas y el material por el cual están circulando. Son ejemplos de corrientes eléctricas la conducción metálica, donde los electrones recorren un conductor eléctrico, como el metal, y la electrólisis, donde los iones(átomos cargados) fluyen a través de líquidos. Mientras que las partículas pueden moverse muy despacio, algunas veces con una velocidad media de deriva de sólo fracciones de milímetro por segundo,34 el campo eléctrico que las controla se propaga cerca a la velocidad de la luz, permitiendo que las señales eléctricas se transmitan rápidamente por los cables.
La corriente produce muchos efectos visibles, que han hecho que se reconozca su presencia a lo largo de la historia. En 1800, Nicholson y Carlisle descubrieron que el agua podía descomponerse por la corriente de una pila voltaica en un proceso que se conoce como electrólisis; trabajo que posteriormente fue ampliado por Michael Faraday en 1833.  La corriente a través de una resistencia eléctrica produce un aumento de la temperatura, un efecto que James Prescott Joule estudió matemáticamente en 1840 (ver efecto Joule).

Campo eléctrico
El concepto de campo eléctrico fue introducido por Michael Faraday. Un campo eléctrico se crea por un cuerpo cargado en el espacio que lo rodea, y produce una fuerza que ejerce sobre otras cargas que están ubicadas en el campo. Un campo eléctrico actúa entre dos cargas de modo muy parecido al campo gravitatorio que actúa sobre dos masas, y como tal, se extiende hasta el infinito y su valor es inversamente proporcional al cuadrado de la distancia.42 Sin embargo, hay una diferencia importante: Mientras la gravedad siempre actúa como atracción, el campo eléctrico puede producir atracción o repulsión. Si un cuerpo grande como un planeta no tiene carga neta, el campo eléctrico a una distancia determinada es cero. Por ello la gravedad es la fuerza dominante en el universo, a pesar de ser mucho más débil.
Un campo eléctrico varía en el espacio, y su fuerza en cualquier punto se define como la fuerza (por unidad de carga) que se necesita para que una carga esté inmóvil en ese punto.  La carga de ensayo debe de ser insignificante para evitar que su propio campo afecte el campo principal y también debe ser estacionaria para evitar el efecto de los campos magnéticos. Como el campo eléctrico se define en términos de fuerza, y una fuerza es un vector, entonces el campo eléctrico también es un vector, con magnitud y dirección. Específicamente, es un campo vectorial.

Potencial eléctrico
El concepto de potencial eléctrico tiene mucha relación con el campo eléctrico. Una carga pequeña ubicada en un campo eléctrico experimenta una fuerza, y para llevar esa carga a ese punto en contra de la fuerza necesitó hacer un trabajo. El potencial eléctrico en cualquier punto se define como la energía requerida para mover una carga de ensayo ubicada en el infinito a ese punto.  Por lo general se mide en voltios, donde un voltio es el potencial en el que es necesario un julio (unidad) de trabajo para atraer una carga de un culombio desde el infinito. Esta definición formal de potencial tiene una aplicación práctica, aunque un concepto más útil es el de diferencia de potencial, y es la energía requerida para mover una carga entre dos puntos específicos. El campo eléctrico tiene la propiedad especial de ser conservativo, es decir que no importa la trayectoria realizada por la carga de prueba; todas las trayectorias de dos puntos específicos consumen la misma energía, y además con un único valor de diferencia de potencial.

Electromagnetismo
Se denomina electromagnetismo a la teoría física que unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos son obra de Faraday, pero fueron formulados por primera vez de modo completo por Maxwell.  La formulación consiste en cuatro ecuaciones diferenciales vectoriales, conocidas como ecuaciones de Maxwell, que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales: densidad de carga eléctrica, eléctrica, desplazamiento y corriente de desplazamiento.
A principios del siglo XIX Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. A partir de esa base Maxwell unificó en 1861 los trabajos de físicos como AmpèreSturgeonHenryOhm yFaraday, en un conjunto de ecuaciones que describían ambos fenómenos como uno solo, el fenómeno electromagnético.
Se trata de una teoría de campos; las explicaciones y predicciones que da se basan en magnitudes físicas vectoriales y son dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los que intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre la materia.

Circuitos eléctricos
Un circuito eléctrico es una interconexión de componentes eléctricos tales que la carga eléctrica fluye en un camino cerrado, por lo general para ejecutar alguna tarea útil.  Los componentes en un circuito eléctrico pueden ser muy variados, puede tener elementos como resistorescapacitoresinterruptorestransformadores yelectrónicos. Los circuitos electrónicos contienen componentes activos, normalmente semiconductores, exhibiendo un comportamiento no lineal, que requiere análisis complejos. Los componentes eléctricos más simples son los pasivos y lineales.
El comportamiento de los circuitos eléctricos que contienen solamente resistencias y fuentes electromotrices de corriente continua está gobernado por las Leyes de Kirchhoff. Para estudiarlo, el circuito se descompone en mallas eléctricas, estableciendo un sistema de ecuaciones lineales cuya resolución brinda los valores de los voltajes y corrientes que circulan entre sus diferentes partes.
La resolución de circuitos de corriente alterna requiere la ampliación del concepto de resistencia eléctrica, ahora ampliado por el de impedancia para incluir los comportamientos de bobinas y condensadores. La resolución de estos circuitos puede hacerse con generalizaciones de las leyes de Kirchoff, pero requiere usualmente métodos matemáticos avanzados, como el de Transformada de Laplace, para describir los comportamientos transitorios y estacionarios de los mismos.

Propiedades eléctricas de los materiales

Origen microscópico
La posibilidad de transmitir corriente eléctrica en los materiales depende de la estructura e interacción de los átomos que los componen. Los átomos están constituidos por partículas cargadas positivamente (los protones), negativamente (los electrones) y neutras (los neutrones). La conducción eléctrica en los conductores, semiconductores, y aislantes, se debe a los electrones de la órbita exterior o portadores de carga, ya que tanto los electrones interiores como los protones de los núcleos atómicos no pueden desplazarse con facilidad. Los materiales conductores por excelencia son metales, como el cobre, que usualmente tienen un único electrón en la última capa electrónica. Estos electrones pueden pasar con facilidad a átomos contiguos, constituyendo los electrones libres responsables del flujo de corriente eléctrica.
En todos los materiales sometidos a campos eléctricos se modifican, en mayor o menor grado, las distribuciones espaciales relativas de las cargas negativas y positivas. Este fenómeno se denomina polarización eléctrica y es más notorio en los aislantes eléctricos debido a que gracias a este fenómeno se impide liberar cargas, y por lo tanto no conducen, característica principal de estos materiales.
Conductividad y resistencia
La conductividad eléctrica es la propiedad de los materiales que cuantifica la facilidad con que las cargas pueden moverse cuando un material es sometido a un campo eléctrico.64 La resistividad es una magnitud inversa a la conductividad, aludiendo al grado de dificultad que encuentran los electrones en sus desplazamientos, dando una idea de lo buen o mal conductor que es.  Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor. Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la de los semiconductores disminuye ante el aumento de la temperatura.
Los materiales se clasifican según su conductividad eléctrica o resistividad en conductores, dieléctricos, semiconductores y superconductores.
·    Conductores eléctricos. Son los materiales que, puestos en contacto con un cuerpo cargado de electricidad, transmiten ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad, como son el grafito, las soluciones salinas (por ejemplo, el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal más empleado es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60 % de la del cobre es, sin embargo, un material mucho menos denso, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.
·     Dieléctricos. Son los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes. Algunos ejemplos de este tipo de materiales son vidriocerámicaplásticosgomamicacerapapelmadera seca, porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Aunque no existen materiales absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos (forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga) y para confeccionar aisladores (elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico). Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, es aislante a temperatura ambiente y seco pero, bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
La conductividad se designa por la letra griega sigma minúscula (Descripción:  \sigma ) y se mide en siemens por metro, mientras que la resistividad se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω•m, a veces también en Ω•mm²/m).










Proceso en C++
#include <math.h>
#include <iostream>

using namespace std;

int main()
{
    int opcion;
    cout<<"********** MENU PRINCIPAL ********** \n\n";
    cout<<"1) INTENSIDAD DE CORRIENTE \n";
    cout<<"2) FUERZA SOBRE UNA CARGA EN UN CAMPO \n";
    cout<<"3) POTENCIAL ELECTRICO \n";
    cout<<"4) RESISTIVIDAD ELECTRICA \n";
    cout<<"********************\n\n" ;
    cout<<"          Ingrese una opcion:";   cin>>opcion;
   
   
    switch (opcion)
{
    case 1:
         {
        cout<<"***** INTENSIDAD DE CORRIENTE ***** \n\n";
                  
         int I, q, t;
         cout<<"ingrese la carga electrica: "; cin>>q;
         cout<<"ingrese el tiempo: "; cin>>t;
         I=q/t;
         cout<<"LA INTENSIDAD DE CORREINTE ES: "<<I<<endl;
         cout<<"********** \n\n";
          }
         
    break;
   
     case 2:
     {
                   
                         cout<<"***** FUERZA SOBRE UNA CARGA EN UN CAMPO ***** \n\n";
                 
           int F, q, E;
          cout<<"ingrese carga electrica: "; cin>>q;
          cout<<"ingrese intensidad de campo electrico: "; cin>>E;
          F = q*E;
          cout<<"LA FUERZA SOBRE UNA CARGA EN UN CAMPO ES:      "<<F<<endl;
          cout<<"********** \n\n";
          }
    break;
   
     case 3:
           {
            cout<<"***** POTENCIAL ELECTRICO ***** \n\n";
                  
            int V, K, q, r;
            cout<<"ingrese la constante: "; cin>>K;
            cout<<"ingrese carga electrica: "; cin>>q;
            cout<<"ingrese distancia: "; cin>>r;
             V=K*(q/r);
            cout<<"EL POTENCIAL ELECTRICO ES: "<<V<<endl;
            cout<<"********** \n\n";
     }

    break;
   
     case 4:
      {
            cout<<"***** RESISTIVIDAD ELECTRICA *********** \n\n";
                  
             int P, r, a, l;
             cout<<"ingrese la resistencia electrica: "; cin>>r;
             cout<<"ingrese el area transversal: "; cin>>a;
             cout<<"ingrese la longitud del material: "; cin>>l;
             cout<<"LA RESISTIVIDAD ELECTRICA ES: "<<P<<endl;
              cout<<"********** \n\n";
      }

   break;
}
   
     cout<<endl; cout<<"\n";
    system("PAUSE");
    return EXIT_SUCCESS;

}









No hay comentarios:

Publicar un comentario